

Energy sources for muscle contraction & creatinine metabolism

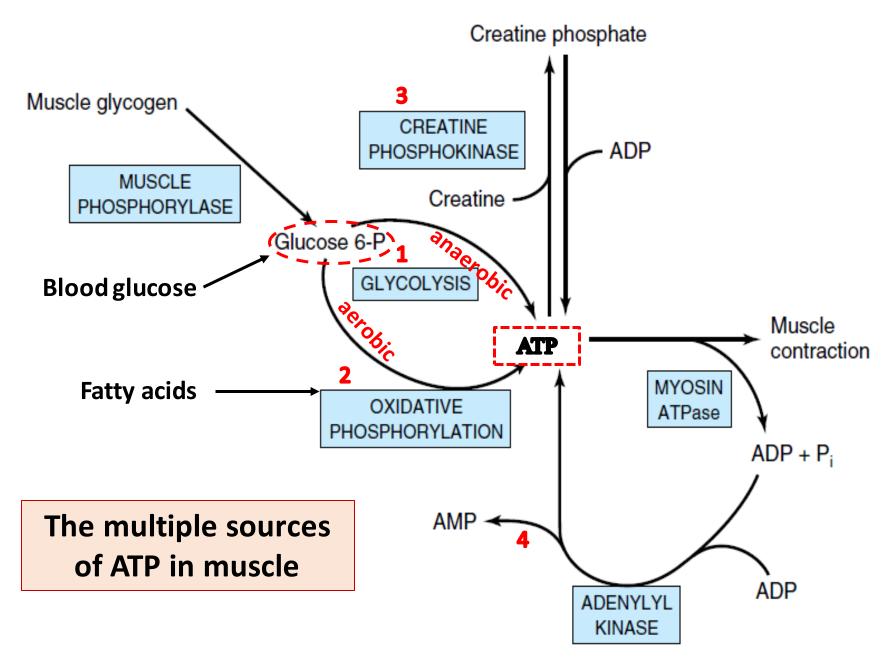
Shuzan Ali Mohammed

Medical Biochemistry & Molecular Biology

Faculty of Medicine- Benha University

Why is energy required for skeletal muscles?

ATP is required for contraction-relaxation cycle of skeletal muscle being essential for activity of key enzymes involved in:


- Membrane excitability (Na⁺/K⁺ ATPase),
- 2. Myofilament cross-bridge cycling (myosin ATPase)
- 3. Sarcoplasmic reticulum calcium handling (Ca2+ ATPase)

Energy sources for skeletal muscles:

ATP can be generated from:

- 1. Glycolysis,
- 2. Oxidative phosphorylation,
- 3. Creatine phosphate,
- 4. 2 ADP by adenylyl kinase

ATP in skeletal muscle is only sufficient to provide energy for a few seconds, so ATP must be constantly renewed from one or more of these sources, depending upon metabolic conditions.

(1) Glycolysis (aerobic or anaerobic):

- Glucose is supplied from <u>blood glucose</u>, <u>endogenous</u>
 <u>muscle glycogen</u> or <u>gluconeogenesis</u> by liver.
- Insulin increases glucose uptake from blood by GLUT4
- In the fed state, most glucose → glycogen, which is a store for use in exercise, "preloading" with glucose.
- Muscle glycogen phosphorylase is activated by Ca²⁺,
 epinephrine & AMP but it is not activated by glucagon
 (no glucagon receptors in muscles).
- Muscle glycogen phosphorylase is deficient in McArdle disease, one of the glycogen storage diseases.

(2) Oxidative phosphorylation:

- Aerobic glycolysis → pyruvate → acetyl CoA → krebs´
 - → ETC (electron transport chain)
- Oxidation of fatty acids → acetyl CoA → krebs' → ETC
- (3) Creatine phosphate:
- Creatine phosphate is formed at times the muscle is <u>relaxed</u>.
 It prevents <u>the rapid depletion of ATP.</u>
- (4) Two molecules of ADP by adenylyl kinase.

Resting Muscle

- The major fuels of skeletal muscle are glucose (fed state) & fatty acids (fasting state)
- Ketone bodies may be used in prolonged fasting or starvation

Active muscle

- Active muscle uses glycogen & triglycerides stores. Blood glucose and free fatty acids also may be used.
- The fuel used in muscle contraction depends on the:
 - 1. Magnitude of exercise (high intensity or moderate)
 - 2. <u>Duration</u> of exercise (sustained prolonged or short)
 - 3. Type of muscle fibers (slow or fast twitch fibers)

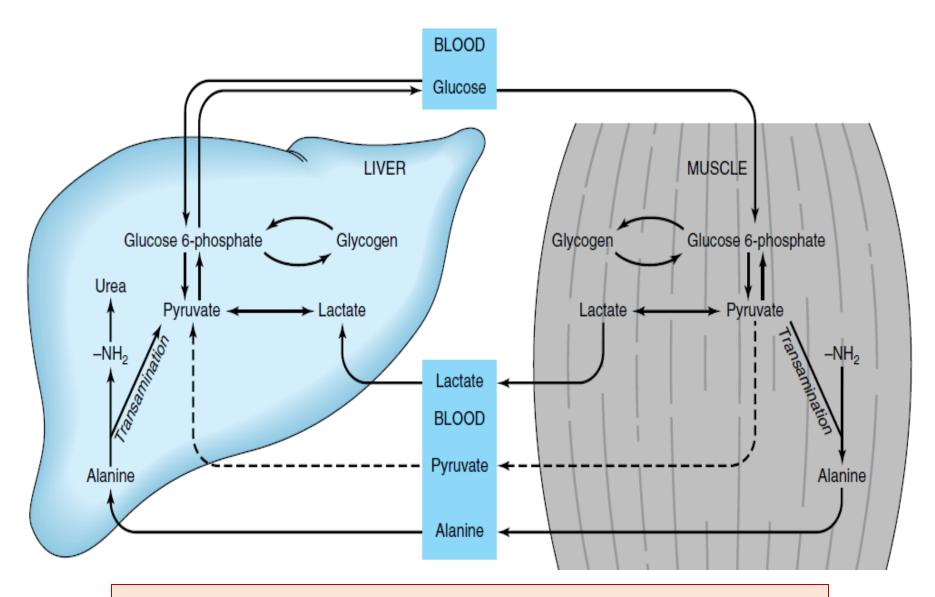
Active muscle

• Proportion of 2 types of fibers varies depending on function:

I. Slow twitch (type I):

- Aerobic, slow to fatigue.
- Primarily in <u>posture-maintaining</u> (leg muscles) & <u>in long</u> <u>distance runners</u> (marathons).

II. Fast twitch (type II):


- IIA (both Aerobic & anaerobic) and IIB (anaerobic)
- Primarily in **short-term**, **high-intensity exercise** (**sprinters** & **weight lifters**).

Types of muscle fibers and major energy sources used by a marathon runner and a sprinter

Marathon Runner (km)	Sprinter (100 m)
Type I (oxidative) fibers are used predominantly.	Type II (glycolytic) fibers are used predominantly.
ATP is the major energy source throughout.	Creatine phosphate is the major energy source during the first 4–5 seconds.
Blood glucose and free fatty acids are the major fuel sources.	Glucose derived from muscle glycogen and metabolized by anaerobic glycolysis is the major fuel source.
Muscle glycogen is slowly depleted.	Muscle glycogen is rapidly depleted.

Some biochemical features of Skeletal Muscles:

- 1. Skeletal muscle **glycogen cannot** contribute directly to <u>blood</u> glucose (it does not contain **glucose-6-phosphatase**)
- 2. Lactate of anaerobic metabolism in skeletal muscle passes to liver \rightarrow glucose \rightarrow muscle (Cori cycle).
- Major amino acids emerging from muscle are alanine (glucosealanine cycle).
- 4. Skeletal muscle is the principal site of metabolism of **branched-chain amino acids**, used as an energy source.
- 5. Proteolysis of muscle during starvation (prolonged fasting > 18 hrs) → amino acids for gluconeogenesis.

The lactic acid (Cori) cycle and glucose-alanine cycle

Creatinine metabolism

GAM

Creatine is formed from 3 aa (glycine, arginine & methionine)

- 1. Glycine + arginine → guanidoacetate in the kidney by arginine glycine transamidinase
- 2. Guanidoacetate is methylated (using SAM) in the <u>liver</u> to form <u>creatine</u> by <u>guanidoacetate methyl transferase</u>.
- **3. Creatine** goes via blood to various tissues, chiefly to <u>muscles</u>.
- Creatine uptake & retention by muscles is \uparrow by androgens (androgen deficiency \rightarrow <u>creatinuria</u> & \checkmark muscle creatine).
- Phosphorylation of creatine by <u>creatine kinase</u> (CK), a muscle-specific enzyme with clinical importance in <u>muscle diseases</u>.

Biosynthesis and metabolism of creatine & creatinine NH₂ $H_2 \mathring{N} = 0$ (Kidney) NH ARGININE-GLYCINE TRANSAMIDINASE CH₂ CH₂ HN-CH₂-COO CH₂ +H₃N - CH₂ - COO Ornithine Glycocyamine (guanidoacetate) $H-C-NH_3^+$ Glycine (Liver) COO S-Adenosyl-**ATP** methionine L-Arginine (SAM) **GUANIDOACETATE** METHYLTRANSFERASE Creatine phosphate S-Adenosyl-ADP homocysteine **ADP** (SAH) ĊH₃ Mg+2_ATP CREATINE KINASE NH₂ (muscle) HN = CН HN = 0NONENZYMATIC Creatine IN MUSCLE Creatinine H₂O

Functions of creatinine phosphate:

- Creatine phosphate (phosphocreatine), is a high-energy compound that can reversibly donate a phosphate group to ADP to form ATP in a reversible reaction catalyzed by creatine kinase (creatine phosphokinase)(CK or CPK).
- Creatine phosphate provides a small but rapidly mobilized store of high-energy phosphate. It can be used to maintain the intracellular level of ATP during the first few seconds of intense muscular contraction, by reversal of CK reaction.
- The amount of creatine phosphate in the body is proportional to the muscle mass.

Fate and Excretion of creatinine phosphate:

- 4. **Creatinine** is formed in muscle by <u>irreversible</u>, <u>spontaneous</u> <u>or **non-enzymatic**</u> loss of phosphate from creatine phosphate or from dehydration of creatine (at a slower rate).
- The two reactions result in the steady production of a constant amount of creatinine that is proportional to the total amount of phosphocreatine and creatine in the body, which is in turn proportional to the muscle mass.
- The creatinine formed goes via the blood to the kidneys to be excreted in the urine.
- 24-hour urinary excretion of creatinine is proportionate to muscle mass.

Fate and Excretion of creatinine phosphate

- Normal plasma creatine: 0.2-0.9 mg/dl.
- The normal plasma creatinine level varies **0.6** and **1.2** mg/dl in adult male, depending on muscle bulk being higher in males than in females (0.5 1.1 mg/dl).
- Higher plasma levels are observed in renal failure.
- Plasma creatinine level is a more *accurate marker of kidney* function than urea, as creatinine is not affected by diet.

